Monatshefte für Chemie Chemical Monthly

© by Springer-Verlag 1985

Cu₂O(SO₄), Dolerophanite: Refinement of the Crystal Structure, with a Comparison of [O Cu(II)₄] Tetrahedra in Inorganic Compounds

Herta Effenberger

Institut für Mineralogie und Kristallographie, Universität Wien, A-1010 Wien, Austria

(Received 23 November 1984. Accepted 12 February 1985)

The refinement of the crystal structure of $Cu_2O(SO_4)$, dolerophanite, $[a=9.370\,(1)\,\text{Å},\ b=6.319\,(1)\,\text{Å},\ c=7.639\,(1)\,\text{Å},\ \beta=122.34\,(1)^\circ;$ space group $C\,2/m;Z=4;R=0.035]$ confirmed the trigonal dipyramidal coordination of one Cu(II) atom (mean distance $Cu-O=2.025\,\text{Å}$). One O atom is tetrahedrally surrounded by four Cu(II) atoms; the mean Cu(II)-O distance of $1.918\,\text{Å}$ compares well to $[O\,Cu(II)_4]$ tetrahedra found in inorganic crystal structures.

[Keywords: $Cu_2O(SO_4)$; Dolerophanite; Crystal structure refinement; $[O\,Cu(II)_4]$ Tetrahedron]

Cu₂O(SO₄), Dolerophanit: Verfeinerung der Kristallstruktur mit einem Vergleich von [O Cu(II)₄]-Tetraedern in anorganischen Verbindungen

Die Verfeinerung der Kristallstruktur von $Cu_2O(SO_4)$, Dolerophanit, $[a=9.370\,(1)\,\text{Å},\ b=6.319\,(1)\,\text{Å},\ c=7.639\,(1)\,\text{Å},\ \beta=122.34\,(1)^\circ;$ Raumgruppe C_2/m ; Z=4; R=0.035] bestätigte die trigonal dipyramidale Koordination des einen Cu(II)-Atoms (mittlerer Cu—O-Abstand = 2.025 Å). Ein O-Atom ist tetraedrisch von vier Cu(II)-Atomen umgeben; der mittlere Cu(II)—O-Abstand von 1.918 Å entspricht den in ähnlichen $[O_1(II)]$ -Tetraedern von anorganischen Kristallstrukturen gefundenen Werten.

Introduction

Flügel-Kahler¹ determined the crystal structure of Cu₂O(SO₄), dolerophanite, on natural material and gave a detailed description of the structure type. In connection with studies of the coordination chemistry of Cu(II) atoms a refinement of dolerophanite was performed (a) to confirm the trigonal dipyramidal coordination of one Cu(II) atom, and (b) for a

comparison with [O Cu(II)₄] tetrahedra in inorganic crystal structures. Because of lack of natural crystals synthetic material was used.

Results

Synthesis

Crystals of $\text{Cu}_2\text{O}(\text{SO}_4)$ were synthesized under following conditions: a mixture of $\text{CuSO}_4 \cdot 5\,\text{H}_2\text{O}$, KHSO₄, and $\text{CuCl}_2 \cdot 2\,\text{H}_2\text{O}$ (molecular ratio 1:1:10) was first heated for 2 hours at 150(5) °C and afterwards for 5 hours at 600(10) °C in a china crucible at atmospheric pressure. After a cooling-off period of ~12 hours the compounds $\text{Cu}_2\text{O}(\text{SO}_4)$ and $\text{K}_4[\text{Cu}_2\text{O}(\text{SO}_4)_2]_2 \cdot \text{KCl}$ (cf. caratiite²) were obtained. The needle-like crystals of the title compound are yellowish brown in colour (elongated parallel to [010]).

Refinement of the Crystal Structure

For the crystal data as well as for the parameters of the data collection cf. Table 1. The X-ray intensities were corrected for absorption (emperical ψ scans) as well as for *Lorentz*- and polarization effects. The atomic coordinates given in 1 were used in the starting set of a full-matrix least-squares refinement. Complex scattering functions 3 were used, and a secondary isotropic extinction correction was applied 4 . The obtained R values are included into Table 1; the structure parameters are given in Table 2; finally the largest difference of an atomic position given in 1 and in this refinement is 0.06 Å [atom O(2)], the mean value is 0.02 Å.

Table 1. Summary of crystal data, X-ray intensity measurements, and crystal structure refinement for dolerophanite

a = 9.370 (1) Å b = 6.319 (1) Å c = 7.639 (1) Å	STOE four-circle diffractometer and program system STRUCSI on an ECLIPSE S/140 graphite monochromatized MoKα radiation				
$\beta = 122.34(1)^{\circ}$	crystal dimensions:	$0.025 \times 0.09 \times 0.04 \mathrm{mm}^3$			
$V = 382.1 \text{Å}^3$	scan speed ratio:	$2\theta:\omega=1:1$			
Temperature: 295 K.	step width:	0.03°			
space group: C2/m	steps/reflection:	$35 + (\alpha_1, \alpha_2)$ splitting			
$Z = 4 \left\{ \mathrm{Cu_2O(SO_4)} \right\}$	time/step:	0.5 to 1.5 s			
$\mu(\text{MoK}\alpha) = 113 \text{cm}^{-1}$	3 standard reflections measured each 60 min				
	range of data: $3^{\circ} < 2\theta < 6$	0°			
no. of variables: 47	measured reflections:	$1040 (\pm h - k \pm l)$			
R = 0.035	unique reflections:	598			
$R_{w} = 0.032$	unique reflections with $F_o > 3\sigma(F_o)$: 558				
$w = 1.251/[\sigma(F_0)]^2$	(used for the crystal structure refinement)				

Table 2. Atomic coordinates and anisotropic temperature parameters for dolerophanite with e.s.d.'s in parentheses.

		ATF = e	ATF = $\exp[-2\pi^2 \sum_{i=1,j=1}^{2} U_{ij} a_i^* a_j^* h_i h_j]$	$a_i^* a_j^* h_i h_j $		
Atom	Wyckoff notation	Site symmetry	x/a	y/b	z/c	Ucquiv
Cu(1) Cu(2)	4 t	- E £	1/4 0.0721 (1)	4/1	0.2182(1)	0.009
0(1) 0(2)	44,	H	0.2038 (7) 0.2947 (6)	1/2	0.2232(9) 0.2532(9) 0.4593(8)	0.019
O(4) O(4)	8 3	. T	0.1514 (5) 0.4916 (4)	0.1906 (6)	0.2498 (5)	0.012
Atom	U_{11}	U_{22}	<i>U</i> ₃₃	U_{12}	U_{13}	U ₂₃
Cu(1) Cu(2)	0.0055 (4)	0.0106(4)	0.0088(4)	-0.0009(3)	0.0025(3)	0.0023 (3)
S O(1) O(2)	0.0060(6) 0.022(3) 0.008(2)	0.0101 (7) 0.028 (3) 0.024 (3)	0.0099 (7) 0.025 (3) 0.009 (2)	000	$0.0016(5) \\ 0.017(3) \\ -0.003(2)$	000
O(3) O(4)	0.004(2) $0.008(1)$	0.009(2) 0.010(2)	$0.010(2) \\ 0.018(2)$	0.001(1)	0.001(2)	0.002(1)

Discussion

The Cu(1) atom is "square planar" coordinated by O atoms with Cu(1)—O = 1.882(2) Å and 2.070(3) Å ("[CuO₄] square"). The coordination figure is completed to a distorted octahedron by two distant O atoms [2.526(5) Å]. Contrary the Cu(2) atom is trigonal dipyramidal coordinated with only slightly varying Cu(2)—O bond lengths. The mean Cu(2)—O of 2.025 Å is 2.5% longer than the mean value within the [Cu(1)O₄] square. The Cu(2) atom is shifted out of the plane defined by the three equatorial O atoms into the direction of one apex by 0.283 Å. Nevertheless, the bond lengths to both the apexes are equal to each other within one e.s.d. [Cu—O = 1.906(6) Å; 1.907(5) Å], and they are the shortest bonds within the coordination polyhedron of the Cu(2) atom [for the equatorial O atoms Cu—O = 2.000(5) Å; 2.155(3) Å, $2 \times$]. Further O atoms have Cu(2)—O $\geqslant 3.3$ Å. Similar coordinations of Cu(II) atoms have been found only in a few inorganic crystal structures (cf. 5-7).

The S—O bond lengths of the [SO₄] group can be correlated with the coordination of the O atoms: S—O(1) = 1.456 (6) Å and S—O(2) = 1.453 (6) Å are equal to each other within one e.s.d.; the O(1) atom builds two long, the O(2) atom one short Cu—O bond. The O(4) atom builds two short Cu—O bonds $\lceil S$ —O(4) = 1.491 (3) Å].

Table 3.	Comparison	of O	atoms	coordinated b	by four	Cu(II)	atoms in	inorganic
			Cl	rystal structur	es			

Chemical formula (mineral name)	O—Cu (in from-to	CuOCu (in °) from-to	
CuO (tenorite) ⁸ $Cu_2O(SO_4)$ (dolerophanite) $K_4[Cu_2O(SO_4)_2]_2 \cdot MeCl$ (caratiite) ² $Cu_4O(PO_4)_2^{9,10}$ $Cu_5O_2(PO_4)_2^{11}$ $Cu_3Mo_2O_9^{12}$	1.951-1.961	1.956	95.7-145.8
	1.882-2.000	1.918	93.6-117.6
	1.902-1.948	1.925	97.8-114.7
	1.895-1.924	1.911	96.9-142.5
	1.909-1.943	1.932	95.1-125.0
	1.860-1.962	1.899	102.6-135.1

The atom O(3) is tetrahedrally coordinated by two Cu(1) and two Cu(2) atoms. Table 3 gives a survey of inorganic compounds with an O atom coordinated only by Cu(II) atoms. All the coordination polyhedra are more or less distorted tetrahedra. It is to be mentioned that they were only found in compounds without any H_2O molecules or OH groups.

The Cu—O bonds in the different [O Cu(II)₄] tetrahedra summarized in Table 3 represent in most cases (short) bonds within "[CuO₄] squares";

two exceptions are known: in Cu₂O(SO₄) and in Cu₅O₂(PO₄)₄ trigonal dipyramidal coordinated Cu(II) atoms were found which are involved at the building of [O Cu(II)₄] tetrahedra. From the formula given by *Brown* and Wu13 for calculating bond valences one can calculate a formal O^[4Cu]—Cu(II) distance of 1.93 Å, which compares well to the mean values given in Table 3. The maximum difference of the O—Cu bonds within one [O Cu(II)] tetrahedron was found to be 0.118 Å [in Cu₂O(SO₄)], in total they vary for 0.140 Å [the shortest was found in $Cu_2Mo_2O_9$, and the longest one in $Cu_2O(SO_4)$ for the $Cu(2)^{[5]}$ atom]. The Cu—O—Cu bond angles are varying within these coordination polyhedra from 93.6° in Cu₂O(SO₄) to 145.8° in CuO.

Acknowledgements

The author thanks Prof. Dr. J. Zemann (Vienna) for many helpful discussions as well as Prof. Dr. E. R. Wölfel, Dr. H. Paulus, and D.-I. H. Langhof (Darmstadt) The syntheses technical assistance. were supported by "Hochschuljubiläumsstiftung der Stadt Wien".

References

- ¹ Flügel-Kahler E., Acta Crystallogr. 16, 1009 (1963).
- ² Effenberger H., Zemann J., Miner. Mag. 48, 541 (1984).
- ³ International Tables for X-ray Crystallography, Vol. IV. Birmingham: The Kynoch Press. 1974.
- ⁴ Zachariasen W. H., Acta Crystallogr. **23**, 558 (1967).
- ⁵ Zemann J., Fortschr. Miner. 39, 59 (1961).
- ⁶ Zemann J., Copper. In: Handbook of Geochemistry. Berlin-Heidelberg-New York: Springer. 1972.
- Wells A. F., Structural Inorganic Chemistry. Oxford: Clarendon Press. 1984.
- Asbrink S., Norrby L.-J., Acta Crystallogr. B 26, 8 (1970).
 Anderson J. B., Shoemaker G. L., Kostiner E., J. Solid State Chem. 25, 49 (1978).
- ¹⁰ Brunel-Laugt M., Durif A., Guitel J. C., J. Solid State Chem. 25, 39 (1978).
- ¹¹ Brunel-Laügt M., Guitel J.-C., Acta Crystallogr. **B 33**, 3465 (1977).
- ¹² Kihlborg L., Norrestam R., Acta Crystallogr. **B 28**, 3097 (1972).
- ¹³ Brown I. D., Wu K. K., Acta Crystallogr. **B32**, 1975 (1976).